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1. Introduction

Since the pioneer works of Dasgupta and Maskin [14] and Reny [34] on the existence of Nash equi-
libria in games with discontinuous payoffs, a number of authors have extended their results in different 
directions, see for example, Lebrun [26], Bagh and Jofre [2], Monteiro and Page [29], Bich [4,5], Bich and 
Laraki [6], Carbonell-Nicolau [8], Carbonell-Nicolau and McLean [9], Carmona [10–12], Prokopovych [31–33], 
de Castro [16], Reny [34,35,37,38], Nessah and Tian [30], Scalzo [39,41], Tian [43], Uyanık [44], and He and 
Yannelis [21,23,24].1

In this paper, we provide new equilibrium existence results for discontinuous games which are not covered 
by the above literature. To this end, we introduce the notion of “continuous inclusion property”, which allows 
us to prove two new fixed point theorems. The correspondences satisfying the continuous inclusion property 
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could be neither lower nor upper hemicontinuous, actually they may be discontinuous. The continuous 
inclusion property is a very weak condition in the sense that any correspondence, which has either an 
open graph, or open lower sections, or the local intersection property2 or it is upper hemicontinuous, will 
automatically satisfy this property. Our first result is an extension of fixed point theorems of Fan [17] and 
Glicksberg [20], which also generalizes the Browder [7] fixed point theorem in locally convex spaces. The 
second result generalizes substantially the fixed point theorem of Gale and Mas-Colell [19].

With the help of the above two fixed point theorems, we prove several new results. Firstly, we show 
the nonemptiness of demand correspondences for non-ordered and discontinuous preferences. This result 
generalizes the theorem of Sonnenschein [42]. Secondly, we prove the existence of Nash equilibrium for 
discontinuous games with non-ordered preferences. This extends the results in Reny [34] to non-ordered 
preferences. Thirdly, we extend the classical Gale–Debreu–Nikaido lemma (see Debreu [15]) by allowing 
for discontinuous demand correspondences. Our extension generalizes the Gale–Debreu–Nikaido lemma to 
infinite dimensional spaces, and also extends the results of Aliprantis and Brown [1] and Yannelis [47]. To 
show that our generalization is non-vacuous, an example of a Walrasian equilibrium with discontinuous 
preferences is provided, which cannot be covered by any existence result in the literature. However, our 
version of the Gale–Debreu–Nikaido lemma can be applied to this example.

The rest of the paper is organized as follows. In Section 2, the “continuous inclusion property” is proposed, 
and then we prove a fixed-point theorem and a generalization of the fixed-point theorem of Gale and 
Mas-Colell [19]. The existence of Nash equilibrium in games with discontinuous preferences is obtained as 
a direct corollary. Section 3 collects the generalization of the Gale–Debreu–Nikaido lemma to the setting 
with discontinuous preferences in infinite dimensional spaces.

2. Results

2.1. Definitions

Let X and Y be linear topological spaces. Suppose that ψ is a correspondence from X to Y . Then ψ is said 
to be upper hemicontinuous if the upper inverse ψu(V ) = {x ∈ X : ψ(x) ⊆ V } is open in X for every open 
subset V of Y , and upper demicontinuous if the upper inverse of every open half space in Y is open in X. The 
correspondence ψ is said to be lower hemicontinuous if the lower inverse ψl(V ) = {x ∈ X : ψ(x) ∩V �= ∅} is 
open in X for every open subset V of Y . In addition, if ψl(y) = {x ∈ X : y ∈ ψ(x)} is open for each y ∈ Y , 
then ψ is said to have open lower sections. At some x ∈ X, if there exists an open set Ox such that x ∈ Ox

and ∩x′∈Ox
ψ(x′) �= ∅, then we say that ψ has the local intersection property. Furthermore, ψ is said to have 

the local intersection property if this property holds for every x ∈ X.3 Given a linear topological space X, 
its dual is the space X∗ of all continuous linear functionals on X.

We now introduce the following “continuous inclusion property”.

Definition 1. A correspondence ψ from X to Y is said to have the continuous inclusion property at x if there 
exists an open neighborhood Ox of x and a nonempty correspondence Fx : Ox → 2Y such that Fx(z) ⊆ ψ(z)
for any z ∈ Ox and coFx

4 has a closed graph.5

2 See Wu and Shen [46].
3 A continuous selection exists if a correspondence has open lower sections (see Yannelis and Prabhakar [48]) or the local 

intersection property (see Wu and Shen [46]) under certain convexity conditions. Scalzo [40] proposed the “local continuous selection 
property”, which is necessary and sufficient for the existence of a continuous selection.
4 For a correspondence F , coF is the convex hull of F .
5 If the sub-correspondence Fx has a closed graph and X is finite dimensional, then coFx still has a closed graph since the convex 

hull of a closed set is closed in finite dimensional spaces. However, this may not be true if one works with infinite dimensional 
spaces. One can easily see that assuming the sub-correspondence Fx is convex valued and has a closed graph would suffice for our 
aim.
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Notice that if a correspondence has the continuous inclusion property, then at every point of its domain 
the correspondence includes a sub-correspondence such that the convex hull of this sub-correspondence is 
locally closed.

Remark 1. It can be easily checked that any nonempty correspondence with open lower sections has the 
local intersection property, and any correspondence with the local intersection property has the continuous 
inclusion property. Furthermore, any upper hemicontinuous, convex and compact valued correspondence 
satisfies the continuous inclusion property.

Below, we provide an example of a correspondence which satisfies the continuous inclusion property, but 
does not have open lower sections or the local intersection property.

Example 1. Let

F (x) =

⎧⎨
⎩

[0, 1], x = 0;

{| sin( 1
x )|, | cos( 1

x )|}, x ∈ (0, 1].

The functions | sin( 1
x )| and | cos( 1

x )| oscillate in any neighborhood of the origin and will pass every point of 
the unit interval for infinitely many times as x approaches 0. Notice that F satisfies the continuous inclusion 
property as it is upper hemicontinuous.

The correspondence F does not have any continuous selection. Otherwise, suppose that F has a continuous 
selection f and f(0) = a ∈ [0, 1]. Then for sufficiently small δ > 0, we have f(x) ∈ [a − 0.001, a + 0.001] for 
x ∈ (0, δ). Pick some b ∈ (0, 1) and z0 such that b, 

√
1 − b2 /∈ [a − 0.01, a + 0.01] and sin(z0) = b. Let xk =

1
z0+2kπ . Then for sufficiently large k, xk ∈ (0, δ). However, f(xk) ∈ {| sin( 1

xk
)|, | cos( 1

xk
)|} = {b, 

√
1 − b2}, 

which is a contradiction.
It is obvious that F l(y) is not open for any y ∈ [0, 1], and F does not have the local intersection property. 

In particular, for any x ∈ (0, 1) and δ > 0, there exist two distinct points x′ and x′′ such that |x − x′| ≤ δ, 
|x − x′′| ≤ δ, and F (x′) ∩ F (x′′) = ∅.

2.2. Operations on correspondences

In this subsection, we consider the preservation and the failure of the continuous inclusion property under 
some usual operations, including union, inclusion, addition and product.

Let X, Y , Z, {Xj}j∈J and {Yj}j∈J be linear topological spaces, where J is an index set. Given a family 
of correspondences {ψj}j∈J from X to Y , we define the union and intersection of this family pointwise. 
That is, ∪j∈Jψj maps x to ∪j∈Jψj(x), and ∩j∈Jψj maps x to ∩j∈Jψj(x).

Let ψ1 and ψ2 be two correspondences from X to Y , and α and β be two nonzero numbers. The linear 
combination αψ1 + βψ2 of ψ1 and ψ2 is defined as

(αψ1 + βψ2)(x) = {αy1 + βy2 : y1 ∈ ψ1(x), y2 ∈ ψ2(x)}.

The product of a family of correspondences {ψj : Xj → 2Yj}j∈J is the correspondence 
∏

j∈J ψj from ∏
j∈J Xj to 

∏
j∈J Yj , defined naturally by (

∏
j∈J ψj)(x) =

∏
j∈J ψj(xj) for each x = {xj}j∈J .

In the next proposition, we consider the preservation and the failure of the continuous inclusion property 
under some regularity conditions.
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Proposition 1.

1. Let ψ1 : X → 2Y be a correspondence having the continuous inclusion property, and {φj : X → 2Y }j∈J be 
a family of arbitrary correspondences. Then their union (∪j∈Jφj) ∪ψ1 also has the continuous inclusion 
property.

2. Let ψ1 : [0, 1] → 2[0,1] and ψ2 : [0, 1] → 2[0,1] be two correspondences both having the continuous inclusion 
property, their intersection may not have the continuous inclusion property.

3. If Y is a compact Hausdorff space, and ψ, φ : X → 2Y are convex valued correspondences with the 
continuous inclusion property, then αψ + βφ has the continuous inclusion property for any nonzero α
and β.

4. Let {ψi : Xi → 2Yi}1≤i≤n be a finite family of correspondences having the continuous inclusion property. 
Then their product 

∏
1≤i≤n ψi also has the continuous inclusion property.

Proof. (1) Fix x ∈ X. Since ψ1 has the continuous inclusion property, there exists an open neighborhood 
Ox of x and a nonempty correspondence Fx : Ox → 2Y such that Fx(x′) ⊆ ψ1(x′) for any x′ ∈ Ox and coFx

has a closed graph. Since ψ1 is a sub-correspondence of (∪j∈Jφj) ∪ ψ1, the rest is clear.
(2) Let ψ1 : [0, 1] → 2[0,1] and ψ2 : [0, 1] → 2[0,1] be defined as follows:

ψ1(x) =

⎧⎨
⎩
{x, 0}, 0 ≤ x ≤ 1

2 ,

{x, 1}, 1
2 < x ≤ 1;

ψ2(x) =

⎧⎨
⎩
{1 − x, 0}, 0 ≤ x ≤ 1

2 ;

{1 − x, 1}, 1
2 < x ≤ 1.

It is obvious that ψ1 and ψ2 satisfy the continuous inclusion property since both of them have continuous 
selections. However, their intersection is

ψ1 ∩ ψ2(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{0}, 0 ≤ x < 1
2 ;

{0, 1
2}, x = 1

2 ;

{1}, 1
2 < x ≤ 1.

It is clear that the correspondence ψ1∩ψ2 does not satisfy the continuous inclusion property at the point 1
2 .

(3) Fix x ∈ X. Since ψ and φ are convex valued and have the continuous inclusion property at x, there 
exist open neighborhoods O1

x and O2
x of x, and nonempty convex valued correspondences F 1

x : O1
x → 2Y and 

F 2
x : O2

x → 2Y such that F 1
x (x′) ⊆ ψ(x′) for any x′ ∈ O1

x and F 2
x (x′) ⊆ φ(x′) for any x′ ∈ O2

x, and both F 1
x

and F 2
x have closed graphs. Let Ox = O1

x ∩ O2
x and Gx = αF 1

x + βF 2
x . Then Ox is an open neighborhood 

of x, Gx is convex valued, and Gx(x′) ⊆ (αψ + βφ)(x′) for any x′ ∈ Ox. Since Y is a compact Hausdorff 
space and F 1

x (resp. F 2
x ) has a closed graph, F 1

x (resp. F 2
x ) is upper hemicontinuous and compact valued. 

As a result, Gx is upper hemicontinuous and compact valued, and hence has a closed graph. This proves 
our claim.

(4) This property is obvious. �
2.3. A fixed-point theorem

Below we prove a fixed-point theorem based on the continuous inclusion property. The Fan–Glicksberg 
theorem shows that an upper hemicontinuous, nonempty, convex and compact valued correspondence has 
a fixed point under some regularity conditions. Our theorem replaces the upper hemicontinuity condition 
on the fixed point theorems of Fan [17] and Glicksberg [20] by the continuous inclusion property. Since an 
upper hemicontinuous, convex and compact valued correspondence has the continuous inclusion property, 
our fixed point theorem improves the fixed point theorems of Fan [17] and Glicksberg [20].
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Theorem 2. Let X be a nonempty, compact, convex subset of a Hausdorff locally convex linear topological 
space Y , and ψ : X → 2X be a correspondence which is nonempty and convex valued, and has the continuous 
inclusion property. Then there exists a point x∗ ∈ X such that x∗ ∈ ψ(x∗).

Proof. Since ψ has the continuous inclusion property, for each x ∈ X, there exists an open neighborhood 
Ox and a nonempty correspondence Fx : Ox → 2X such that Fx(z) ⊆ ψ(z) for any z ∈ Ox and coFx has a 
closed graph.

The collection C = {Ox : x ∈ X} is an open cover of X. Since X is compact, there is a finite set 
{x1, . . . , xn} such that X ⊆ ∪1≤i≤nOxi

. Let {Exi
}1≤i≤n be a closed refinement; that is, Exi

⊆ Oxi
, Exi

is 
closed and X = ∪1≤i≤nExi

(see Michael [27, Lemma 1]).
For each x ∈ X, let I(x) = {1 ≤ i ≤ n : x ∈ Exi

}, and F (x) = co
(
∪i∈I(x)coFxi

(x)
)
. Then it is obvious 

that F is nonempty and convex valued. Moreover, F is also compact valued; see Hildenbrand [25, p. 37]. 
For each x and i ∈ I(x), Fxi

(x) ⊆ ψ(x). Since ψ is convex valued, coFxi
(x) ⊆ ψ(x), which implies that 

∪i∈I(x)coFxi
(x) ⊆ ψ(x). Again by the convexity of ψ(x), we have F (x) = co

(
∪i∈I(x)coFxi

(x)
)
⊆ ψ(x).

Since coFxi
has a closed graph in Exi

and X is a compact Hausdorff space, it is upper hemicontinuous in 
Exi

. We can slightly abuse the notation by assuming that coFxi
is empty when xi /∈ Exi

. As Exi
is a closed 

set, the correspondence coFxi
is upper hemicontinuous on the whole space. For each x, I(x) is finite, which 

implies that ∪i∈I(x)coFxi
(x) is the union of a finite family of upper hemicontinuous correspondences, and 

hence is upper hemicontinuous (see Hildenbrand [25, p. 22]). Since F (x) is the convex hull of ∪i∈I(x)coFxi
(x)

and it is compact valued, it is also upper hemicontinuous (see Proposition 6 in Hildenbrand [25, p. 26]). By 
Fan–Glicksberg’s fixed-point theorem (see Fan [17] and Glicksberg [20]), there is a point x∗ ∈ X such that 
x∗ ∈ F (x∗) ⊆ ψ(x∗). �

We provide a simple example to illustrate the above result.

Example 2. Let

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( 1
1+2x ,

1
1+x ), 0 ≤ x < 1

2 ;

( 1
1+5x ,

1
1+4x ), 1 ≥ x > 1

2 ;

[0, 1], x = 1
2 .

It is easy to see that the correspondence F does not have a continuous selection, and is not closed valued. 
As a result, the fixed point theorems of Brouwer and Kakutani are not readily applicable. However, F has 
the continuous inclusion property as it includes an upper hemicontinuous sub-correspondence.

Remark 2. Browder [7, Theorem 1] and Yannelis and Prabhakar [48, Theorem 3.3] proved a fixed point 
theorem by assuming that Y a Hausdorff linear topological space (not necessarily locally convex) and the 
correspondence ψ has open lower sections. In Wu and Shen [46, Theorem 2], Y is required to be locally 
convex and ψ has the local intersection property. Since the local intersection property implies the continuous 
inclusion property, our result covers the theorem of Wu and Shen [46] as a corollary.

The continuous inclusion property requires that the correspondence ψ has a locally closed sub-
correspondence. As shown in the proof, this implies that the correspondence ψ contains a globally upper 
hemicontinuous sub-correspondence. Such a majorization idea has been adopted in Wu [45] to generalize 
the result of Michael [28].

2.4. A generalization of the Gale and Mas-Colell’s fixed-point theorem

Below, we will generalize the fixed-point theorem of Gale and Mas-Colell [19] based on our continuous 
inclusion property.
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Theorem 3. Let I be a countable set and for each i ∈ I, Xi be a nonempty, compact, convex and metrizable 
subset of a Hausdorff locally convex linear topological space, and X =

∏
i∈I Xi. For each i ∈ I, let ψi : X →

2Xi be a convex valued correspondence, and I(x) = {i ∈ I : ψi(x) �= ∅, xi /∈ ψi(x)}. Suppose that for every 
x ∈ X with I(x) �= ∅, there is some i ∈ I(x) such that ψi has the continuous inclusion property at x. Then 
there exists a point x∗ ∈ X such that for each i, either x∗

i ∈ ψi(x∗) or ψi(x∗) = ∅.

We first present two preparatory lemmas.

Lemma 1. Suppose that the conditions in Theorem 3 hold. For each i, let

Ui = {x ∈ X : ψi has the continuous inclusion property at x}.

If Ui = ∅ for all i, then the result of Theorem 3 is true.

Proof. Since Ui = ∅ for each i, I(x) = ∅ for all x by the conditions in Theorem 3, which implies that for 
each i, either xi ∈ ψi(x) or ψi(x) = ∅. �
Lemma 2. Under conditions of Theorem 3, for each i such that Ui �= ∅, there exists a nonempty, convex 
and compact valued, upper hemicontinuous correspondence φi : Ui → 2Xi such that φi(x) ⊆ ψi(x) for each 
x ∈ Ui.

Proof. Suppose that Ui �= ∅. Since ψi has the continuous inclusion property at each x ∈ Ui, there exists 
an open subset Oi

x ⊆ X such that x ∈ Oi
x and a correspondence F i

x : Oi
x → 2Xi with nonempty values 

such that F i
x(z) ⊆ ψi(z) for any z ∈ Oi

x and coF i
x is closed. Then Oi

x ⊆ Ui, which implies that Ui is open. 
Since X is metrizable, Ui is paracompact (see for example, Michael [28, p. 831]). Moreover, the collection 
Ci = {Oi

x : x ∈ X} is an open cover of Ui. There is a closed locally finite refinement Fi = {Ei
k : k ∈ K}, 

where K is an index set and Ei
k is a closed set in X (see Michael [27, Lemma 1]).

For each k ∈ K, choose xk ∈ X such that Ei
k ⊆ Oi

xk
. For each x ∈ Ui, let Ii(x) = {k ∈ K : x ∈ Ei

k}. 
Then Ii(x) is finite for each x ∈ Ui. Let φi(x) = co

(
∪k∈Ii(x)coF i

xk
(x)

)
for x ∈ Ui. For each x and k ∈ Ii(x), 

F i
xk

(x) ⊆ ψi(x). Thus, coF i
xk

(x) ⊆ ψi(x), which implies that ∪k∈Ii(x)coF i
xk

(x) ⊆ ψi(x). As a result, we have 
φi(x) = co

(
∪k∈Ii(x)coF i

xk
(x)

)
⊆ ψi(x).

Since coF i
xk

has a closed graph in Ei
k and Xi is a compact Hausdorff space, coF i

xk
is compact valued 

and upper hemicontinuous. For each x, Ii(x) is finite, which implies that ∪k∈Ii(x)coF i
xk

(x) is the union of 
values for a finite family of compact valued and upper hemicontinuous correspondences, and hence is also 
compact valued and upper hemicontinuous at the point x. Since each coF i

xk
(x) is convex and compact, and 

φi(x) is the convex hull of the finite union ∪k∈Ii(x)coF i
xk

(x), φi(x) is also compact, which implies that φi(x)
is upper hemicontinuous at the point x ∈ Ui. This completes the proof. �

Now we are ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 1, we only need to consider the case that there exists some i such that 
Ui �= ∅.

Define a correspondence

Hi(x) =

⎧⎨
⎩
φi(x), x ∈ Ui;

Xi, otherwise.

Then it is obvious that Hi is nonempty, convex and compact valued. Since Ui is open and φi is upper 
hemicontinuous by Lemma 2, Hi is upper hemicontinuous on the whole space. Let H =

∏
Hi. Since H
i∈I
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is nonempty, convex and compact valued, and upper hemicontinuous, by the Fan–Glicksberg fixed point 
theorem (see Fan [17] and Glicksberg [20]), there exists a point x∗ ∈ X such that x∗ ∈ H(x∗).

Let J = {i ∈ I : x∗
i /∈ ψi(x∗)}. Then I(x∗) ⊆ J . If x∗ ∈ Uj for some j ∈ J , then x∗

j ∈ φj(x∗) ⊆ ψj(x∗), 
which is a contradiction. Thus, we have x∗ /∈ Uj for every j ∈ J , which implies that I(x∗) = ∅. Therefore, 
for every j ∈ J , ψj(x∗) = ∅. For every i ∈ I \ J , x∗

i ∈ ψi(x∗). The proof is complete. �
Remark 3. In Gale and Mas-Colell [19], Xi is finite dimensional and ψi is lower hemicontinuous for each i. 
Then the continuous selection theorem of Michael [28, Theorem 3.1”’] implies that ψi has a continuous 
selection φi on Ui, which can be regarded as a continuous sub-correspondence of ψi. Thus, the continuous 
inclusion property holds and the result follows.

In addition, our result implies that one can further weaken the lower hemicontinuity condition of Gale 
and Mas-Colell [19]. Specifically, at each x ∈ Ui, suppose that there exists an open neighborhood Oi

x of x
and a nonempty convex valued, lower hemicontinuous correspondence F i

x : Oi
x → Xi with F i

x(z) ⊆ ψi(z) for 
z ∈ Oi

x. Then the continuous inclusion property still holds. However, in this case Xi is still required to be 
finite dimensional since the continuous selection theorem of Michael [28] is needed.

2.5. Existence of maximal elements

Suppose that X is a nonempty subset of a linear topological space. Let P (x) = {y ∈ X : (y, x) ∈ P} for 
all x ∈ X, where P is some binary relation on X. Then P is a preference correspondence induced by P
on X. If P (x∗) = ∅ for some x∗ ∈ X, then x∗ is said to be a maximal element in X.

Corollary 1. Let X be a compact, convex subset of a Hausdorff locally convex linear topological space and 
P : X → 2X be a correspondence such that for all x ∈ X, x /∈ coP (x). If P has the continuous inclusion 
property at each x ∈ X such that P (x) �= ∅, then there exists a point x∗ ∈ X such that P (x∗) = ∅.

Proof. By way of contradiction, suppose that P (x) �= ∅ for all x ∈ X. Then the correspondence 
ψ(x) = coP (x) is convex and nonempty valued. It is clear that ψ has the continuous inclusion property. By 
Theorem 2, there exists a fixed point x∗ ∈ X such that x∗ ∈ ψ(x∗) = coP (x∗), a contradiction. �
Remark 4. Theorem 5.1 of Yannelis and Prabhakar [48] proved the existence of maximal element when X is 
a compact, convex subset of a Hausdorff linear topological space and the correspondence P has open lower 
sections. This result generalizes Lemma 4 of Fan [18]. In our Corollary 1, the condition on the correspondence 
is more general while X is required to be locally convex.

Below, we shall illustrate the usefulness of the above corollary.
Let � and X be two Hausdorff locally convex linear topological spaces, where � is the set of all price 

vectors and X is the set of goods. Let the correspondence B : � → 2X denote the budget set which is assumed 
to be nonempty, convex and compact valued. The preference correspondence is denoted by P : X → 2X and 
satisfies the condition that x /∈ coP (x) for any x ∈ X. Let ψ(p, x) = B(p) ∩ P (x), and define the demand 
correspondence D : � → 2X by D(p) = {x ∈ B(p) : ψ(p, x) = ∅}.

Corollary 2. If ψ(p, ·) has the continuous inclusion property for each p ∈ �,6 then the demand correspondence 
D is nonempty valued.

6 The continuity inclusion property captures the case that the preference could be discontinuous. For example, people’s preference 
on food could dramatically change if the amount goes to the zero: people will be sick or even die.
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Proof. Fix p0 ∈ �. Since x /∈ coP (x) for any x ∈ X, it follows that x /∈ coψ(p0, x) for any x ∈ B(p0). Since 
ψ(p0, ·) : B(p0) → 2B(p0) has the continuous inclusion property, B(p0) is nonempty, convex and compact, 
by Corollary 1, there exists a point x0 ∈ B(p0) such that ψ(p0, x0) = ∅. That is, x0 ∈ D(p0), which implies 
that D is nonempty valued. �

The above corollary generalizes the corresponding theorem in Sonnenschein [42] by relaxing the continuity 
assumption.

2.6. The existence of Nash equilibrium

Below, we obtain the existence of a Nash equilibrium in games with (possibly) nontransitive, incom-
plete, discontinuous preferences as a direct corollary of Theorem 3. Notice that the preference need not be 
representable by a utility function.

Let I be a set of countable players, and the game is Γ = {(Xi, Pi) : i ∈ I}, where Xi is the action space
of player i, X =

∏
i∈I Xi, and the preference correspondence of player i is Pi : X → 2Xi . If the preference 

Pi can be represented by a utility function ui : X → R, then

Pi(x) = {yi ∈ Xi : ui(yi, x−i) > ui(x)}.

Corollary 3. Let Γ = {(Xi, Pi) : i ∈ I} be a game such that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff locally convex linear topological 
space;

ii Let I(x) = {i ∈ I : Pi(x) �= ∅}. Suppose that for every x ∈ X with I(x) �= ∅, there exists an agent 
i ∈ I(x) such that Pi has the continuous inclusion property at x and xi /∈ coPi(x).

Then Γ has a Nash equilibrium; that is, there exists some x∗ ∈ X such that for any i ∈ I, Pi(x∗) = ∅.

Proof. Denote ψi = coPi for each i ∈ I. Let I ′(x) = {i ∈ I : ψi(x) �= ∅, xi /∈ ψi(x)}. Then for every x ∈ X

with I ′(x) �= ∅, I(x) �= ∅. By condition (ii), there exists an agent i ∈ I ′(x) such that ψi has the continuous 
inclusion property at x.

By Theorem 3, there exists a point x∗ ∈ X such that for each i, either x∗
i ∈ ψi(x∗) or ψi(x∗) = ∅. Then 

I(x∗) = {i ∈ I : x∗
i ∈ ψi(x∗)}. If I(x∗) �= ∅, then by condition (ii), there is an agent i ∈ I(x∗) such that Pi

has the continuous inclusion property at x∗ and x∗
i /∈ ψi(x∗), which is a contradiction. As a result, I(x∗) = ∅. 

That is, ψi(x∗) = ∅ for each i ∈ I, which implies that x∗ is a Nash equilibrium in the game Γ. �
The following result is an immediate corollary of Corollary 3. The continuous inclusion property is directly 

assumed for each player.

Corollary 4. Let Γ = {(Xi, Pi) : i ∈ I} be a game such that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff locally convex linear topological 
space;

ii Pi has the continuous inclusion property at each x ∈ X = ×i∈IXi with Pi(x) �= ∅;
iii xi /∈ coPi(x) for all x ∈ X.

Then Γ has a Nash equilibrium; that is, ∃x∗ ∈ X such that for any i ∈ I, Pi(x∗) = ∅.
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Remark 5. Suppose that for each i ∈ I, the utility function ui satisfies the generalized payoff security 
condition of Carmona [11], and define the value function gi : X−i → R by gi(x−i) = supxi∈Xi

ui(xi, x−i). 
Fix ε > 0. For each i ∈ I, consider the correspondence

M ε
i (x−i) = {xi ∈ Xi : ui(xi, x−i) > gi(x−i) − ε}.

Then it is easy to see that M ε
i has the continuous inclusion property. Following the argument in 

Prokopovych [31], one can impose standard conditions (e.g., quasiconcavity and transfer reciprocal upper 
semicontinuity) to prove the existence of approximate and exact Nash equilibrium.

Remark 6. Reny [34] proved the existence of a pure strategy Nash equilibrium in games with discontinuous 
payoffs based on some payoff security type condition. Our Corollaries 3 and 4 extend his results to non-
ordered preferences, but do not imply his and vice versa. However, to verify the conditions of theorems in 
the above paper, one has to work with the non-equilibrium point, and check for all players at every point in 
a neighborhood of this non-equilibrium point. To the contrary, we can check the preference correspondence 
for each agent separately, as shown in Corollary 4.7

3. A generalization of the Gale–Debreu–Nikaido lemma

In this section, using the fixed point theorem (Theorem 2), we provide a generalization of the Gale–
Debreu–Nikaido lemma to an infinite-dimensional commodity space with discontinuous excess demand 
correspondences.

Let X be a Hausdorff locally convex linear topological space, and E a closed, convex cone of X having 
an interior point e. Denote E∗ = {p ∈ X∗ : p · x ≤ 0 for all x ∈ E} �= {0}; that is, E∗ is the dual cone of E. 
Let � = {p ∈ E∗ : p · e = −1} and Z : � → 2X be an excess demand correspondence. Given p ∈ �, let 
Y (p) = {x ∈ X : p · x ≤ 0} and Γ(p) = Y (p) ∩ Z(p).

Theorem 4. If Γ is nonempty and convex valued, and satisfies the continuous inclusion property, where X∗

is endowed with the weak∗ topology, then ∃p∗ ∈ � such that Z(p∗) ∩E �= ∅.

Proof. Define a correspondence Π from E to � as follows: for each x ∈ E,

Π(x) = argmaxp∈�(p · x).

By Alaoglu’s Theorem, � is weak∗ compact. By Berge’s maximum theorem (see Berge [3]), Π is nonempty, 
convex and weak∗ compact valued, and upper hemicontinuous.

Define the correspondence Ψ from E ×� to E ×� as Ψ(x, p) = Γ(p) ×Π(x) for each (x, p) ∈ E ×�. It 
is obvious that Ψ is nonempty and convex valued. For each p0 ∈ �, since Γ is convex valued and has the 
continuous inclusion property, there exists a weak∗ open neighborhood Op0 of p0, and a nonempty, convex 
valued and weak∗ upper hemicontinuous correspondence Fp0 : Op0 → 2E such that Fp0(q) ⊆ Γ(q) for any 
q ∈ Op0 . Let Φ(x, p) = Fp0(p) ×Π(x) for (x, p) ∈ E×Op0 . Then Φ is a sub-correspondence of Ψ on E×Op0 , 
which is nonempty, convex-valued and upper hemicontinuous. Therefore, Ψ has the continuous inclusion 
property.

By Theorem 2, there exists (x∗, p∗) ∈ E ×� such that (x∗, p∗) ∈ Ψ(x∗, p∗). That is,

1. p∗ · x∗ ≥ p · x∗ for any p ∈ �;
2. x∗ ∈ Z(p∗) and p∗ · x∗ ≤ 0.

7 For further results, see Reny [37] and Carmona and Podczeck [13]. See also Section 3.2 of He and Yannelis [22] for a discussion 
on the relationship of these papers.
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Combining (1) and (2), we have p · x∗ ≤ p∗ · x∗ ≤ 0 for any p ∈ �, which implies that x∗ ∈ E. Therefore, 
Z(p∗) ∩ E �= ∅ for some p∗ ∈ �. �

Below, we provide an alternative proof using Corollary 1.

Alternative Proof. Since Γ has the continuous inclusion property, for each p ∈ �, there exists an open 
neighborhood Op and a nonempty correspondence Gp : Op → 2X such that Gp(q) ⊆ Γ(q) for any q ∈ Op

and coGp has a closed graph. As in the proof of Theorem 2, one can find a nonempty, convex and compact 
valued, weak∗ upper hemicontinuous correspondence G : � → 2X which is a sub-correspondence of Γ. Define 
the correspondence F : � → 2� by F (p) = {q ∈ � : q · x > 0 for all x ∈ G(p)}. Fix q ∈ �. As in the proof 
of Yannelis [47, Theorem 3.1], one can easily show that W = F l(q), where W = {p ∈ � : G(p) ⊆ Vq} and 
Vq = {x ∈ X : q · x > 0}. The set W is weak∗ open since G is weak∗ upper hemicontinuous. Consequently, 
F has weak∗ open lower sections, and hence has the continuous inclusion property (recall Remark 1).8 In 
addition, by the definition of F , p /∈ F (p) for every p ∈ �. Since � is nonempty, convex and weak∗ compact, 
by Corollary 1, there exists a point p∗ ∈ � such that F (p∗) = ∅; that is,

for any q ∈ �, ∃x ∈ G(p∗), q · x ≤ 0. (1)

We will show that (1) implies Z(p∗) ∩ E �= ∅ for some p∗ ∈ �. Suppose otherwise, then there exists a 
continuous linear functional which strictly separates the convex compact set G(p∗) ⊆ Z(p∗) from the closed 
convex set E; that is,

there exists r ∈ X∗, r �= 0 such that inf
x∈G(p∗)

r · x > sup
x∈E

r · x ≥ 0. (2)

Without loss of generality, we can take r to be in �.9 It follows from (2) that r · x > 0 for any x ∈ G(p∗), 
a contradiction to (1).

Therefore, Z(p∗) ∩ E �= ∅ for some p∗ ∈ �. �
3.1. An example

Below, we provide an example which indicates how Theorem 4 can be used to prove the existence of an 
equilibrium. Notice that the preferences of both agents below are neither upper hemicontinuous nor lower 
hemicontinuous. An equilibrium exists by virtue of our Theorem 4.

Example 3. Consider the following 2-agent 2-good economy:

1. The set of available allocations for both agents are X1 = X2 = [0, 1] × [0, 1], X = X1 ×X2.
2. The initial endowments are given by e1 = (2

3 , 
1
3 ) and e2 = (1

3 , 
2
3 ).

3. For agent 1 and an allocation x1 = (x1
1, x

2
1) and x2 = (x1

2, x
2
2), agent 1’s preference only depends on his 

own allocation:
a if x1

1 > x2
1, then P1(x1, x2) = {(y, z) : z > y ≥ 0, y + z ≥ 1};

b if x1
1 < x2

1, then P1(x1, x2) = {(y, z) : y > z ≥ 0, y + z ≥ 1};
c if x1

1 = x2
1, then P1(x1, x2) = {(y, y) : y > x1

1}.
The preference of agent 2 is defined similarly.

Note that Pi is neither upper hemicontinuous nor lower hemicontinuous, i = 1, 2.

8 The continuous inclusion property of F holds on the subset � of X∗, which is endowed with the weak∗ topology.
9 If r /∈ �, then the fact e is an interior point of E implies that r · e < 0, and we can replace r by r

−r·e .
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For any price p = (p1, 1 − p1), the budget set of agent 1 is

B1(p) = {(x1
1, x

2
1) ∈ X1 : p1 · x1

1 + (1 − p1) · x2
1 ≤ 1

3(1 + p1)},

and the budget set of agent 2 is

B2(p) = {(x1
2, x

2
2) ∈ X2 : p1 · x1

2 + (1 − p1) · x2
2 ≤ 1

3(2 − p1)}.

The demand correspondence for agent i is defined as

Di(p) = {x ∈ Bi(p) : Pi(x) ∩Bi(p) = ∅}.

It is easy to see that Di is nonempty and convex valued. In addition, given any price p, x1 = (1+p1
3 , 1+p1

3 ) ∈
D1(p) and x2 = (2−p1

3 , 2−p1
3 ) ∈ D2(p).

One can define functions ψ1 and ψ2 such that ψ1(p) = (1+p1
3 , 1+p1

3 ) and ψ2(p) = (2−p1
3 , 2−p1

3 ). Since 
ψi(p) ∈ Di(p) for every p, Di has the continuous inclusion property for any i. Then D1 + D2 also satisfies 
the continuous inclusion property, Theorem 4 can be used to show the existence of an equilibrium. Indeed, 
(x1

1, x
2
1) = (x1

2, x
2
2) = (1

2 , 
1
2 ) and (p1, p2) = (1

2 , 
1
2 ) is an equilibrium.

3.2. Remarks

We show that Theorem 4 implies the standard Gale–Debreu–Nikaido lemma, see Debreu [15].

Corollary 5. Let X = R
l and Z : � → 2X be an excess demand correspondence satisfying the following 

conditions:

1. Z is nonempty, convex and compact valued, and upper hemicontinuous;
2. for every p ∈ �, ∃z ∈ Z(p) such that p · z ≤ 0.

Then, ∃p∗ ∈ � such that Z(p∗) ∩ R
l
− �= ∅.

Proof. Given p ∈ �, let Y (p) = {z ∈ R
l : p · z ≤ 0} and X(p) = Y (p) ∩ Z(p). Due to (2), X is nonempty. 

Since both Y and Z are convex valued and upper hemicontinuous, X is also convex valued and upper 
hemicontinuous. Thus, X has the continuous inclusion property. Then the result follows from Theorem 4. �
Remark 7. Yannelis [47] proved the market equilibrium theorem of Gale–Debreu–Nikaido for an infinite 
dimensional commodity space by assuming that the excess demand correspondence is upper demicontinuous. 
In our theorem, the excess demand correspondence may not be continuous, hence not upper demicontinuous.

Suppose that X is an AM-space with the unit e, X+ is the positive cone of X, and � = {p ∈ X∗
+ : p ·e = 1}. 

Aliprantis and Brown [1] worked with an excess demand function Z : � → X instead of an excess demand 
correspondence, and proved the following result.

Corollary 6 (Aliprantis and Brown [1]). Suppose that

1. there exists a consistent locally convex topology on X such that Z is weak∗ continuous;
2. Z satisfies the Walras law, i.e., p · Z(p) = 0 for all p ∈ �.

Then there exists a point p ∈ � such that Z(p) ≤ 0.
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It is obvious that this result is covered by our Theorem 4, since Γ(p) = Z(p) in their setting. As a 
consequence, Γ is a weak∗ continuous function and the continuous inclusion property automatically holds.
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